Zernike velocity moments for sequence-based description of moving features
نویسندگان
چکیده
The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape’s description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion. q 2006 Published by Elsevier B.V.
منابع مشابه
Zernike Velocity Moments for Description and Recognition of Moving Shapes
New Zernike velocity moments have been developed to describe an object, not only by its shape , but also by its motion throughout an image sequence. These are an extended form of the orthogonal Zernike moment set and include velocity information introduced via centralised moments. Initial analysis shows that they perform well when applied to analysing gait sequences resulting in a good recognit...
متن کاملOn Moving Object Reconstruction By Moments
Recent research using statistical moments to describe moving shapes through an image sequence has led to an interest in reconstructing moving shapes from their moment description. This paper discusses how the moment description through a series of frames might be used to predict missing or intermediate frames within a sequence. Additionally, this highlights generic aspects of moment reconstruct...
متن کاملAn extended feature set for blind image steganalysis in contourlet domain
The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 24 شماره
صفحات -
تاریخ انتشار 2006